miércoles, 20 de octubre de 2010

Balistica Interior y Exterior

BALÍSTICA INTERIOR


La balística interior se ocupa de la temperatura, el volumen y la presión de los gases producidos por la combustiónde la carga propulsora en el cañón; tiene también que ver con el efecto de la expansión de esos gases sobre el cañón, la cureña y el proyectil. Algunos de los elementos críticos implicados en el estudio de la balística interior son la relación entre el peso de la carga y el peso del proyectil, la medida del calibre, el tamaño, forma y densidadóptimos de los granos de carga propulsora para los diferentes cañones, y los problemas conexos de máxima y mínima presión en la boca del arma. El ingeniero británico Benjamín Robins llevó a cabo muchos experimentosde balística interior; sus resultados justifican que se le considere el padre de la artillería moderna. Los experimentos modernos confirmaron la mayoría de las conclusiones de Robins, pero pusieron en duda sus conclusiones respecto al máximo de la temperatura y presión. Más tarde, en el siglo XVIII, el físico angloamericano Benjamín Thompson realizó el primer intento de medir la presión generada por la pólvora; el resultado de sus experimentos constituye la mayor contribución a la balística interior realizada hasta entonces.
Hacia 1760, los estudiosos franceses de balística determinaron la relación entre la velocidaden la boca del arma y la longitud del cañón, midiendo la velocidad de una bala de mosquete y cortando una porción del cañón antes de medir la velocidad en el siguiente disparo. Utilizando los resultados de estos experimentos junto con los avances en química y termodinámica, los expertos en balística pudieron desarrollar fórmulas que acreditaron la relación entre la velocidad en la boca del arma y la forma del proyectil, el peso, tipo y tamaño de grano de la carga de pólvora, la presión y temperatura en el cañón, el tamaño de la cámara de la pólvora y la longitud del cañón.

BALÍSTICA EXTERIOR


En balística exterior, la forma, el calibre, el peso, las velocidades iniciales, la rotación, la resistencia del aire y la gravedad constituyen los elementos que inciden en la trayectoria de un proyectil desde el momento en que abandona el cañón hasta que alcanza el blanco.
Hasta la mitad del siglo XVI se creyó que las balas se movían en línea recta desde el cañón hasta el blanco y que las bombas disparadas por morteros describían una trayectoria compuesta por dos líneas rectas unidas por un arco de círculo. El matemático italiano Niccolò Tartaglia arguyó, en un tratado sobre cañones, que ninguna porción de la trayectoria de un proyectil podía ser una línea recta, y que cuanto mayor fuera la velocidad del proyectil, más tensa sería su trayectoria. Tartaglia inventó el cuadrante de cañones utilizado para determinar la elevación de la boca de fuego. Galileo demostró que, en el vacío, un proyectil describe un arco parabólico. La descripción de la ley de la gravedad por Isaac Newton aclaró la causa del movimiento curvilíneo de los proyectiles. Mediante el uso del cálculo, Newton determinó la cantidad de movimiento transferida del proyectil a las partículas de aire en reposo; este método de calcular la resistencia del aire se ha visto superado por el uso de tablas, derivadas de disparos experimentales.
Para determinar la velocidad del proyectil una vez abandonado el cañón se utilizan dos métodos: uno mide la cantidad del movimiento del proyectil, el otro calcula el tiempo requerido para que el proyectil cubra una distancia concreta. El primer método es el más antiguo y se utilizó mientras los cañones y proyectiles fueron pequeños, las velocidades bajas y los alcances cortos, con lo que sus resultados eran lo bastante precisos para la mayoría de los propósitos prácticos. El péndulo balístico y el péndulo de cañón se utilizaron para medir la cantidad de movimiento del proyectil, pero tales mecanismos se sustituyeron por máquinas más baratas y seguras que trabajan sobre los principios del segundo método.
El péndulo balístico fue desarrollado hacia 1743 por Robins, quien fue el primero en afrontar una serie sistemática de experimentos para determinar la velocidad de los proyectiles. El principio del péndulo balístico, así como el del péndulo de cañón desarrollado por Thompson, radica en la transferencia de la cantidad de movimiento de un proyectil con masa pequeña y alta velocidad, a una masa grande con una velocidad resultante baja.
El péndulo balístico consiste en una enorme plancha de hierro a la que se emperna un bloque de madera para recibir el impacto del proyectil; el péndulo se suspendía de un eje horizontal. Al ser golpeado por el proyectil, el bloque retrocedía en un cierto arco que podía ser medido con facilidad. Conociendo el arco de retroceso y las masas de proyectil y del péndulo, podía calcularse la velocidad del proyectil. El péndulo balístico tan sólo soportaba el impacto de balas de mosquete; sin embargo, Robins realizó importantes progresos en la ciencia de los cañones al determinar las relaciones que habían de darse entre el calibre, la longitud del cañón y la carga de energía.
Gracias al segundo método, la velocidad del proyectil se determina midiendo el tiempo que tarda en recorrer una longitud conocida de su trayectoria; para este propósito se han diseñado numerosas máquinas. En 1840 el físico británico sir Charles Wheatstone sugirió el uso de la electricidad para medir pequeños intervalos de tiempo. Esta sugerencia condujo al desarrollo del cronógrafo, un mecanismo que registraba por medios eléctricos el tiempo que necesitaba un proyectil para pasar entre dos pantallas de alambre fino.
Las fórmulas y tablas para balística exterior de cada nuevo tipo de cañón son más o menos empíricas y deben comprobarse mediante experimentos reales, antes de que se puedan calibrar con precisión los mecanismos de puntería.

No hay comentarios:

Publicar un comentario

Balistica Forense